求数学竞赛高中的试题什么的
接下来,星空知识网将带你认识并了解高二数学竞赛试题,希望可以给你带来一些启示。
求数学竞赛高中的试题什么的

2007年全国高中数学联合竞赛加试试题及参考答案 (考试时间:120分钟满分150分)一、(本题满分50分)如图,在锐角△ABC中,AB<AC,AD是边BC上的高,P是线段AD内一点.过P作PE⊥AC,垂足为E,做PF⊥AB,垂足为F.O1、O2分别是△BDF、△CDE的外心.求证:O1、O2、E、F四点共圆的充要条件为P是△ABC的垂心.二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子.如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连.现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连.问最少取出多少个棋子才可能满足要求?并说明理由.三、(本题满分50分)设集合P={1,2,3,4,5},对任意k∈P和正整数m,记f(m,k)=,其中[a]表示不大于a的最大整数.求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n.2007年全国高中数学联合竞赛加试试题参考答案一、(本题满分50分)如图,在锐角△ABC中,AB<AC,AD是边BC上的高,P是线段AD内一点.过P作PE⊥AC,垂足为E,作PF⊥AB,垂足为F.O1、O2分别是△BDF、△CDE的外心.求证:O1、O2、E、F四点共圆的充要条件为P是△ABC的垂心.证明:连结BP、CP、O1O2、EO2、EF、FO1.因为PD⊥BC,PF⊥AB,故B、D、P、F四点共圆,且BP为该圆的直径.又因为O1是△BDF的外心,故O1在BP上且是BP的中点.同理可证C、D、P、E四点共圆,且O2是CP的中点.综合知O1O2∥BC,所以∠PO2O1=∠PCB.因为AF·AB=AP·AD=AE·AC,所以B、C、E、F四点共圆.充分性:设P是△ABC的垂心,由于PE⊥AC,PF⊥AB,所以B、O1、P、E四点共线,C、O2、P、F四点共线,∠FO2O1=∠FCB=∠FEB=∠FEO1,故O1、O2、E、F四点共圆.必要性:设O1、O2、E、F四点共圆,故∠O1O2E+∠EFO1=180°.由于∠PO2O1=∠PCB=∠ACB-∠ACP,又因为O2是直角△CEP的斜边中点,也就是△CEP的外心,所以∠PO2E=2∠ACP.因为O1是直角△BFP的斜边中点,也就是△BFP的外心,从而∠PFO1=90°-∠BFO1=90°-∠ABP.因为B、C、E、F四点共圆,所以∠AFE=∠ACB,∠PFE=90°-∠ACB.于是,由∠O1O2E+∠EFO1=180°得(∠ACB-∠ACP)+2∠ACP+(90°-∠ABP)+(90°-∠ACB)=180°,即∠ABP=∠ACP.又因为AB<AC,AD⊥BC,故BD<CD.设B′是点B关于直线AD的对称点,则B′在线段DC上且B′D=BD.连结AB′、PB′.由对称性,有∠AB′P=∠ABP,从而∠AB′P=∠ACP,所以A、P、B′、C四点共圆.由此可知∠PB′B=∠CAP=90°-∠ACB.因为∠PBC=∠PB′B,故∠PBC+∠ACB=(90°-∠ACB)+∠ACB=90°,故直线BP和AC垂直.由题设P在边BC的高上,所以P是△ABC的垂心.二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子.如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连.现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连.问最少取出多少个棋子才可能满足要求?并说明理由.解:最少要取出11个棋子,才可能满足要求.其原因如下:如果一个方格在第i行第j列,则记这个方格为(i,j).第一步证明若任取10个棋子,则余下的棋子必有一个五子连珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连.用反证法.假设可取出10个棋子,使余下的棋子没有一个五子连珠.如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子.这样,10个被取出的棋子不会分布在右下角的阴影部分.同理,由对称性,也不会分布在其他角上的阴影部分.第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格.同理(6,4)、(6,5)、(7,4)、(7,5)这些方格上至少要取出2个棋子.在第1、2、3列,每列至少要取出一个棋子,
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。
下一篇:返回列表
相关推荐
- 2025-04-19职称考试英语、计算机的成绩有效期几年?
- 2025-03-23意识的能动作用四个方面
- 2025-04-04化学工艺专业排名
- 2025-04-17四级阅读理解多少分一个;4级阅读理解多少分一题
- 2025-04-13河北高考分数线2024
- 2025-04-20浙江最好的专科大学
- 2025-06-17文科480分的二本大学
- 2025-04-22北京高考690分布:23年北京高考分数线
- 2025-03-23天津英语高考考几次、2024年广东的高考改革方案是怎样的?
- 2025-06-13宏观经济学考试试题
推荐文章